10/10 分 (100%)

测验, 10 个问题

number of iterations

正确

Key concepts on Deep Neural Networks

10/10 分 (100%)

key concepts on	Deep neural networks
则验, 10 个问题	number of layers \boldsymbol{L} in the neural network
正确	
	weight matrices $W^{[l]}$
未选择	圣的是正确的
	size of the hidden layers $n^{[l]}$
正确	
	learning rate $lpha$
正确	
	bias vectors $b^{[l]}$
未选择	圣的是正确的
	activation values $a^{[l]}$
未选择	圣的 是 正确的
3.	1/1分
Which	of the following statements is true?
0	The deeper layers of a neural network are typically computing more complex features of the input than the earlier layers.
正确	
	The earlier layers of a neural network are typically computing more

complex features of the input than the deeper layers.

10/10 分 (100%)

测验, 10 个问题

4。

Vectorization allows you to compute forward propagation in an L-layer neural network without an explicit for-loop (or any other explicit iterative loop) over the layers I=1, 2, ...,L. True/False?

True

0

False

正确

Forward propagation propagates the input through the layers, although for shallow networks we may just write all the lines ($a^{[2]}=g^{[2]}(z^{[2]}), z^{[2]}=W^{[2]}a^{[1]}+b^{[2]},...$) in a deeper network, we cannot avoid a for loop iterating over the layers: ($a^{[l]}=g^{[l]}(z^{[l]}), z^{[l]}=W^{[l]}a^{[l-1]}+b^{[l]}...$).

1/1分

5.

Assume we store the values for $n^{[l]}$ in an array called layers, as follows: layer_dims = $[n_x, 4,3,2,1]$. So layer 1 has four hidden units, layer 2 has 3 hidden units and so on. Which of the following for-loops will allow you to initialize the parameters for the model?


```
for(i in range(1, len(layer_dims))):
parameter['W' + str(i)] = np.random.randn(layers[i], layers[i-1])) *
```

Key concepts on Deep Neural [Network]S= np.random.randn(layers[i], 1) * 0.01 10/10 分(100%)

测验, 10 个问题

1/1分

6.

Consider the following neural network.

How many layers does this network have?

igcap The number of layers <math>L is 4. The number of hidden layers is 3.

正确

Yes. As seen in lecture, the number of layers is counted as the number of hidden layers + 1. The input and output layers are not counted as hidden layers.

- The number of layers L is 3. The number of hidden layers is 3.
- The number of layers L is 4. The number of hidden layers is 4.
- The number of layers L is 5. The number of hidden layers is 4.

1/1分

7.

During forward propagation, in the forward function for a layer l you need to know what is the activation function in a layer (Sigmoid, tanh, ReLU, etc.). During backpropagation, the corresponding backward function also needs to know what is the activation function for layer l, since the gradient depends on it. True/False?

True

正确

Yes, as you've seen in the week 3 each activation has a different derivative. Thus, during backpropagation you need to know which activation was used in the forward propagation to be able to compute the correct derivative.

Fal	se

10/10 分 (100%)

测验, 10 个问题

1/1分

8.

There are certain functions with the following properties:

(i) To compute the function using a shallow network circuit, you will need a large network (where we measure size by the number of logic gates in the network), but (ii) To compute it using a deep network circuit, you need only an exponentially smaller network. True/False?

True

正确

1/1分

9,

Consider the following 2 hidden layer neural network:

Which of the following statements are True? (Check all that apply).

 $W^{[1]}$ will have shape (4, 4)

正确

Yes. More generally, the shape of $W^{[l]}$ is $(n^{[l]}, n^{[l-1]})$.

 $b^{[1]}$ will have shape (4, 1)

正備

Yes. More generally, the shape of $b^{[l]}$ is $(n^{[l]},1)$.

 $W^{\left[1
ight]}$ will have shape (3, 4)

未选择的是正确的

lacksquare $b^{[1]}$ will have shape (3, 1)

Key concepts on Deep Neural Networks

10/10 分 (100%)

测验, 10 个问题

	$W^{\left[2 ight]}$ will have shape (3, 4)
正确 Yes.	More generally, the shape of $W^{[l]}$ is $(n^{[l]}, n^{[l-1]}).$
	$b^{[2]}$ will have shape (1, 1)
未选护	圣的是正确的
	$W^{\left[2 ight]}$ will have shape (3, 1)
未选	圣的是正确的
	$b^{[2]}$ will have shape (3, 1)
正确 Yes.	More generally, the shape of $b^{[l]}$ is $(n^{[l]},1)$.
	$W^{\left[3 ight]}$ will have shape (3, 1)
未选	圣的是正确的
	$b^{[3]}$ will have shape (1, 1)
正确 Yes.	More generally, the shape of $b^{[l]}$ is $(n^{[l]},1)$.
	$W^{\left[3 ight]}$ will have shape (1, 3)
正确 Yes.	More generally, the shape of $W^{[l]}$ is $(n^{[l]}, n^{[l-1]}).$
	$b^{[3]}$ will have shape (3. 1)

未选择的是正确的

10/10 分 (100%)

测验, 10 个问题

1/1分

10.

Whereas the previous question used a specific network, in the general case what is the dimension of $W^{[l]}$, the weight matrix associated with layer l?

- $igcap W^{[l]}$ has shape $(n^{[l]}, n^{[l+1]})$
- $igcup W^{[l]}$ has shape $(n^{[l]},n^{[l-1]})$

正确

True

- $igcup W^{[l]}$ has shape $(n^{[l-1]}, n^{[l]})$
- $igcup W^{[l]}$ has shape $(n^{[l+1]}, n^{[l]})$

